
References

33 of 33

[10] W. H. Ho, E. A. Lee, D. G. Messerschmitt, “High Level Dataflow Programming for Digital Signal Processing”,
VLSI Signal Processing III, IEEE Press 1988.

[11] S. How, “Code Generation for Multirate DSP Systems in GABRIEL”, Master’s Degree Report, U. C. Berkeley,
May 1988.

[12] E. A. Lee, “Static Scheduling of Dataflow Programs for DSP”, Advanced Topics in Dataflow Computing, edited
by J. L. Gaudiot and L. Bic, Prentice-Hall, 1991.

[13] E. A. Lee, D. G. Messerschmitt, “Static Scheduling of Synchronous Dataflow Programs for Digital Signal Pro-
cessing”, IEEE Transactions on Computers, January 1987.

[14] E. A. Lee, D. G. Messerschmitt, “Synchronous Dataflow”, Proceedings of the IEEE, September 1987.

[15] J. R. McGraw, S. K. Skedzielewski, S. Allan, D. Grit, R. Oldehoft, J. Glauert, I. Dobes, P. Hohensee, “SISAL:
Streams and Iteration in a Single Assignment Language”, Language Reference Manual, Version 1.1., July 1983.

[16] D. R. O’ Hallaron, “The ASSIGN Parallel Program Generator”, Technical Report, Memorandum Number
CMU-CS-91-141, School of Computer Science, Carnegie Mellon University, May 1991.

[17] J. Pino, S. Ha E. A. Lee, J. T. Buck, “Software Synthesis for DSP Using Ptolemy”, To appear in Journal of VLSI

Signal Processing, 1993.

[18] D. B. Powell, E. A. Lee, W. C. Newmann, “Direct Synthesis of Optimized DSP Assembly Code From Signal
Flow Block Diagrams”, ICASSP, San Francisco, California, March 1992.

[19] H. Printz, “Automatic Mapping of Large Signal Processing Systems to a Parallel Machine”, Memorandum
CMU-CS-91-101, School of Computer Science, Carnegie-Mellon University, May 1991.

[20] S. Ritz, M. Pankert, H. Meyr, “High Level Software Synthesis for Signal Processing Systems”, Proceedings of
the International Conference on Application Specific Array Processors, Berkeley, CA, August 1992.

[21] S. Ritz, M. Pankert, H. Meyr, “Optimum Vectorization of Scalable Synchronous Dataflow Graphs”, Technical
Report IS2/DSP93.1a, Aachen University of Technology, Germany, January 1993.

[22] G. Sih, “Multiprocessor Scheduling to Account for Interprocessor Communication”, PhD Thesis, University of
California at Berkeley, 1991.

[23] R. E. Tarjan, “Depth First Search and Linear Graph Algorithms”, SIAM J. Computing, June 1972.

[24] W. W. Wadge, E. A. Ashcroft, “Lucid, the Dataflow Language”, Academic Press, 1985.



References

32 of 33

sink(α) The actor at the sink of SDF arc α.

source(α) The actor at the source of SDF arc α.

subgraph A subgraph of an SDF graph G is the graph formed by any subset Z of nodes in G

together with all arcs α in G for which source(α), sink(α) ∈ Z. We denote the sub-

graph corresponding to the subset of nodes Z by subgraph(Z, G), or simply by

subgraph(Z) if G is understood from context.

subindependent Given an SDF graph G, and two disjoint subsets Z1, Z2 of nodes in G, we

say that Z1 is subindependent of Z2 in G if for every arc α in G with sour-

ce(α) ∈ Z2 and sink(α) ∈ Z1, we have delay(α) ≥ total_consumed(α, G).

We say that Z1 is subindependent in G if Z1 is subindependent of (N(G) −
Z1) in G.

successor Given two nodes A and B in an SDF graph, A is a successor of B if there is at least

one arc directed from B to A.

total_consumed(α, G) The total number of samples consumed from arc α in a minimal

schedule period of the SDF graph G; that is, total_consumed(α, G)

= qG(sink(α))c(α).
valid schedule A schedule that is a PASS.

References

[1] A. V. Aho, J. E. Hopcroft, J. D. Ullman, “The Design and Analysis of Computer Algorithms”, Addison-Wesley,
Reading, Mass., 1974.

[2] Arvind, L. Bic, T. Ungerer, “Evolution of Data-Flow Computers”, Chapter 1 in Advanced Topics In Data-Flow

Computing, edited by J. L. Gaudiot and L. Bic, Prentice Hall, 1991.

[3] S. S. Bhattacharyya, E. A. Lee, “Looped Schedules for Dataflow Descriptions of Multirate DSP Algorithms”,
Technical Report, Electronics Research Laboratory, College of Engineering, University of California, Berkeley
CA 94720.

[4] S. S. Bhattacharyya, E. A. Lee, “Scheduling Synchronous Dataflow Graphs For Efficient Looping”, To appear
in Journal of VLSI Signal Processing, 1993.

[5] J. B. Dennis, “First Version of a Dataflow Procedure Language”, MIT/LCS/TM-61, Laboratory for Computer
Science, MIT, 545 Technology Square, Cambridge MA 02139, 1975.

[6] J. B. Dennis, “Stream Data Types for Signal Processing”, Technical Report, September 1992.

[7] G. R. Gao, R. Govindarajan, P. Panangaden, “Well-Behaved Programs for DSP Computation”, ICASSP, San
Francisco, California, March 1992.

[8] D. Genin, J. De Moortel, D. Desmet, E. Van de Velde, “System Design, Optimization, and Intelligent Code Gen-
eration for Standard Digital Signal Processors”, ISCAS, Portland, Oregon, May 1989.

[9] P. N. Hilfinger, “Silage Reference Manual, Draft Release 2.0”, Computer Science Division, EECS Dept., Uni-
versity of California at Berkeley, July 1989.



Glossary

31 of 33

end-for

** multiplier contains LCM({denom(Q(N)) | N ∈ N(G)}). **

for each node N in G
Set Q(N) = reduced_form(multiplier × Q(N)).

end-for

Output Q(N) as qG(N) for each node N in G.

Glossary

Z1 |G Z2 If G is an SDF graph and Z1 and Z2 form a partition of the nodes in G such that Z1

is subindependent of Z2 in G, then we write Z1 |G Z2.

A(G) The set of arcs in the SDF graph G.

appearances(N, S) The number of times that actor N appears in the looped schedule S.

admissable schedule A schedule S1 S2 … Sk such that each Si has sufficient input data to fire

immediately after its antecedents S1 S2 … Si-1 have fired.

c(α) The number of samples consumed from SDF arc α by one invocation of sink(α).

delay(α) The number of delays on SDF arc α.

gcd Greatest common divisor.

looped schedule A schedule that has zero or more parenthesized terms of the form (n Ψ1 Ψ2

… Ψk), where n is a nonnegative integer, and each Ψi represents either an

SDF node or another parenthesized term. (n Ψ1 Ψ2 … Ψk) represents the

successive repetition n times of the firing sequence Ψ1 Ψ2 … Ψk.

N(G) The set of nodes in the SDF graph G.

PASS A periodic admissable sequential schedule.

p(α) The number of samples produced onto SDF arc α by one invocation of source(α).

periodic schedule A schedule that invokes each node at least once and produces no net

change in the number of samples buffered on any arc.

predecessor Given two nodes A and B in an SDF graph, A is a predecessor of B if there is at

least one arc directed from A to B.

qG The repetitions vector qG of the SDF graph G is a vector that is indexed by the

nodes in G. qG has the property that every PASS for G invokes each node N a mul-

tiple of qG(N) times.

single appearance schedule A schedule that contains only one appearance of each actor

in the associated SDF graph.



Conclusion

30 of 33

Appendix

This appendix presents an efficient algorithm for computing the repetitions vector qG for

an SDF graph. The time complexity of this algorithm is linear in the number of arcs in the input

SDF graph. Our specification of the algorithm will use the following notation.

Notation: For a rational number χ, we denote the numerator and denominator of χ as numer(χ)

and denom(χ) respectively, and we denote by reduced_form(χ) that rational number whose

numerator is numer(χ) / gcd(numer(χ), denom(χ)) and whose denominator is denom(χ) / gcd(nu-

mer(χ), denom(χ)). Finally, we denote the least common multiple of a set of positive integers z1,

z2, …, zk by LCM(z1, z2, …, zk). For example numer(6/9) = 6, denom(6/9) = 9, reduced_form(6/9)

= 2/3, and LCM(6, 9) = 18.

Algorithm to compute the repetitions vector in linear time:

Input: a connected SDF graph G.
Output: the repetitions vector qG for G.

Define an array of rational numbers Q with one entry correspond-
ing to each node in G. For each N ∈ N(G), initialize Q(N) to be
zero.

for each arc α in G
if (Q(source(α)) ≠ 0) and (Q(sink(α)) ≠ 0))
then

** check for sample-rate consistency **
if Q(source(α))× p(α) ≠ Q(sink(α))× c(α)
then

ERROR: G has inconsistent sample rates.
exit

end-if

else if Q(source(α)) = 0
then

Set Q(source(α)) = reduced_form(Q(sink(α))× c(α)/p(α)).
Set multiplier = LCM(multiplier, denom(Q(source(α)))).

else if Q(sink(α)) = 0
then

Set Q(sink(α)) = reduced_form(Q(source(α))× p(α)/c(α)).
Set multiplier = LCM(multiplier, denom(Q(sink(α)))).

end-if



Conclusion

29 of 33

existence of a single appearance schedule. When used as a preprocessing technique, this can

sharply reduce the execution time of a loose interdependence algorithm.

7 Conclusion

This paper has presented fundamental topological relationships between iteration and

looping in SDF graphs, and we have shown how to exploit these relationships to synthesize the

most compact looping structures for a large class of applications. Furthermore, we have extended

the developments of [4] by showing how to isolate the minimal subgraphs that require explicit

deadlock detection schemes, such as the reachability matrix, when organizing hierarchy.

This paper also defines a framework for evaluating different scheduling schemes having

different objectives, with regard to their effect on schedule compactness. The developments of

this paper apply to any scheduling algorithm that imposes hierarchy on the SDF graph. For exam-

ple, by successively repeating the same block of code, we can reduce “context-switch” overhead

[21]. We can identify subgraphs that use as much of the available hardware resources as possible,

and these can be clustered, as the computations to be repeatedly invoked. However, the hierarchy

imposed by such a scheme must be evaluated against its impact on program compactness. For

example, if a cluster introduces tight interdependence, then it may be impossible to fit the result-

ing program on chip, even though the original graph had a sufficiently compact schedule.

The techniques developed in this paper have been successfully incorporated into a block-

diagram software synthesis environment for DSP [17]. We are currently investigating how to sys-

tematically incorporate these techniques into other scheduling objectives — for example, how to

balance parallelization objectives with program compactness constraints. Another important

trade-off to further examine is that involving buffering costs.



Clustering to Make Data Transfers More Efficient

28 of 33

so (Z − {B}) is strongly connected, and from condition (4), no member of (Z − {A, B}) is adjacent

to B. In the former case, lemma 7 yields the loose interdependence of Z'.

In the latter case, lemma 5 guarantees that (Z − {B}) is isomorphic to Z'. Since A ∈ (Z −

{Β}), and since from condition (1), A is not contained in any tightly interdependent subgraph of

G, it follows that Z' is loosely interdependent. QED.

If we assume that the input SDF graph has a single appearance schedule then we can

ignore condition (1). From our observations, this is a valid assumption for the vast majority of

practical SDF graphs. Also, condition (3) can be verified by examining any single arc directed

from A to B; if α is directed from A to B then condition (3) is equivalent to p(α) = kc(α). In our

current implementation, we consider only the case k = 1 for condition (3) because in practice, this

corresponds to most of the opportunities for efficiently using registers.

We see that the clustering process defined by theorem 4 — under the assumption that the

original graph has a single appearance schedule — requires only local dataflow information, and

thus it can be implemented very efficiently. If our assumption that a single appearance schedule

exists is wrong, then we can always undo our clustering decisions. Since the assumption is fre-

quently valid, and since it leads to a very efficient algorithm, this is the form in which we have

implemented theorem 4. Finally, in addition to making data transfers more efficient, our clustering

process provides a fast way to reduce the size of the graph without canceling the existence the

A

B

C

D

A

B

C

D

A

B

C

D

(a) (b) (c)

Fig. 9. An illustration of how a directed circuit involving Ω originates in G’ for theorem 4.
The two possible scenarios are shown in (a) and (b); (c) will not occur due to condition
(4). SDF parameters on the arcs have not been assigned because they are irrelevant
to the introduction of directed cycles.



Clustering to Make Data Transfers More Efficient

27 of 33

to B, and thus G would not be strongly connected. Thus A ∈ (X1 − Z), and there are no arcs

directed from (X1 − Z) to Z. So all arcs directed from (X1 − Z + {B}) to Z have node B as their

source. From EQ 1 it follows that Z |G (X1 − Z + {B}). Now A, B ∈ (X1 − Z + {B}), so applying

lemma 4 we conclude that G' is loosely interdependent.

If X1 is strongly connected, we know from condition (1) that there exist Y1, Y2 such that

Y1 |subgraph(X1) Y2. From EQ 2 and lemma 6, Y1 is subindependent of Y2 in G. Now if A ∈ Y1,

then from condition (3), B is subindependent of Y2 in G, so from fact 6(a), (Y1 ∪ {B}) |G Y2.

Applying lemma 4, we see that G' is loosely interdependent. On the other hand, suppose that A ∈

Y2. From EQ 1, we know that Y1 is subindependent of {B} in G. From fact 6(b), it follows that Y1

is subindependent of (Y2 ∪ {B}), so again we can apply lemma 4 to conclude that G' is loosely

interdependent. QED.

Theorem 4: Suppose G is a connected SDF graph, A and B are distinct nodes in G such that B is

a successor of A, and W = {A, B} is a proper subset of N(G). If we cluster W in G then the tightly

interdependent components of G' are the same as the tightly interdependent components of G if

the following conditions all hold:

(1) Neither A nor B is contained in a tightly interdependent component of G.

(2) At least one arc directed from A to B has zero delay.

(3) qG(B) = kqG(A) for some positive integer k.

(4) B has no predecessors other than A and B.

Proof. It suffices to show that all strongly connected subgraphs in G' that contain Ω are loosely

interdependent. So we suppose that Z' is a strongly connected subset of N(G') that contains Ω, and

we let Z denote the “corresponding” subset in G; that is, Z = Z' − {Ω} + {A, B}. Now in Z', sup-

pose that there is a directed circuit (C → Ω → D → C) containing the node Ω. From condition (4),

this implies that there is a directed circuit in G containing A, C, D, and possibly B. The two possi-

ble ways in which a directed circuit in G introduces a directed circuit involving Ω in G' are illus-

trated in figure 9(a) and (b); the situation in (c) cannot arise because of condition (4).

Now in Z', if one or more of the circuits involving Ω corresponds to figure 9(a), then Z

must be strongly connected. Otherwise, all of the circuits involving Ω correspond to figure 9(b),



Clustering to Make Data Transfers More Efficient

26 of 33

Proof. For each arc α directed from a member of Z2 to a member of Z1, we have delay(α) ≥ total_-

consumed(α, subgraph(Z)). From fact 3, qsubgraph(Z)(N) = qG(N) for all N ∈ Z. Thus, for all arcs α

in subgraph(Z), total_consumed(α, subgraph(Z)) = total_consumed(α, G), and we conclude that

Z1 is subindependent of Z2 in G. QED.

Lemma 7: Suppose G is a strongly connected SDF graph, A and B are distinct nodes in G, and W

= {A, B} forms a proper subset of N(G). Suppose also that the following conditions all hold:

(1) Neither A nor B is contained in a tightly interdependent subgraph of G.

(2) There is at least one arc directed from A to B that has no delay.

(3) B has no predecessors other than A or B.

(4) qG(B) = kqG(C) for some C ∈ N(G), C ≠ B.

Then the SDF graph G' that results from clustering W is loosely interdependent.

Proof. From (1) G must be loosely interdependent, so there exist subsets X1, X2 of N(G) such that

X1 |G X2. If A, B ∈ X1 or A, B ∈ X2, then from lemma 4, we are done. Now condition (2) pre-

cludes the scenario (B ∈ X1, A ∈ X2), so the only remaining possibility is (A ∈ X1, B ∈ X2).

There are two cases to consider here:

(i) B is not the only member of X2. Then from (3), (X1 + {B}) |G (X2 − {B}). But A, B ∈

(X1 + {B}), so lemma 4 again guarantees that G' is loosely interdependent.

(ii) A is not the only member of X1 and X2 = {B}. Thus we have X1 |G {B}, so

∀ α ∈ A(G), (source(α) = B) ⇒ delay(α) ≥ total_consumed(α, G). (EQ 1)

Also, since C∈ X1 we have from (4) that qG(X1) = gcd({qG(N) | Ν ∈ X1}) = gcd({qG(N) |

Ν ∈ X1} ∪ {kqG(C)}) = gcd({qG(N) | Ν ∈ X1} ∪ {qG(B)}) = gcd({qG(N) | Ν ∈ N(G)}) = 1. That

is,

qG(X1) = 1. (EQ 2)

Now if X1 is not strongly connected, then it has a proper subset Z such that there are no

arcs directed from a member of (X1 − Z) to a member of Z. Furthermore, from condition (3), A ∉

Z. This is true because if Z contained A, then no member of (X1 − Z) would have a directed path



Clustering to Make Data Transfers More Efficient

25 of 33

We will use the following obvious fact about isomorphic SDF graphs.

Fact 8: If G1 and G2 are two isomorphic SDF graphs and G1 is loosely interdependent then G2 is

loosely interdependent.

Lemma 5: Suppose that G is an SDF graph, M ⊆ N(G), A1∈ M, and A2 is an SDF node that is

contained in N(G) but not in M such that

(1) A2 is not adjacent to any member of (M − {A1}), and

(2) for some positive integer k, q(A2) = kq(A1).

Then if we cluster W = {A1, A2} in G, then subgraph(M − {A1} + {Ω}, G') is isomorphic to

subgraph(M, G).

As a simple illustration, consider again the clustering example of figure 7(c)-(d). Let G

and G' respectively denote the graphs of figures 7(c) and (d), and in figure 7(c), let M = {A, B}, A1

= A, and A2 = C. Then (M − {A1} + Ω) = {B, Ω}, and clearly, subgraph({B, Ω}, G') is isomorphic

to subgraph({A, B}, G).

Proof of lemma 5. Let C = subgraph(M − {A1} + Ω, G'), let Φ denote the set of arcs in

subgraph(M, G), and let Φ' denote the set of arcs in C. From (1), every arc in C has a correspond-

ing arc in subgraph(M, G) and vice-versa, and thus Φ' = {α' | α ∈ Φ}. Now from the definition of

clustering a subgraph, we know that p(α') = p(α) for any arc α ∈ Φ such that source(α) ≠ Α1. If

source(α) = A1, then α is replaced by α' with source(α') = Ω, and p(α') = p(α)q(A1) / gcd(q(A1),

q(A2)). But gcd(q(A1), q(A2)) = gcd(q(A1), kq(A1)) = q(A1), so p(α') = p(α). Thus p(α') = p(α)

for all α ∈ Φ. Similarly, we can show that c(α') = c(α) for all α ∈ Φ. Thus, the mappings f1: M →

N(C) and f2: Φ → Φ' defined by

f1(N) = N if N ≠ A1, f1(A1) = Ω; and f2(α) = α'

demonstrates that subgraph(M, G) is isomorphic to C. QED.

Lemma 6: Suppose that G is a strongly connected SDF graph, and Z is a strongly connected sub-

set of nodes in G such that qG(Z) = 1. Suppose Z1 and Z2 are disjoint subsets of Z such that Z1 is

subindependent of Z2 in subgraph(Z). Then Z1 is subindependent of Z2 in G.



Clustering to Make Data Transfers More Efficient

24 of 33

We will use the following additional notation in the development of this section.

Notation: Let G be an SDF graph and suppose that we cluster a subset W of nodes in G. We will

refer to the resulting hierarchical graph as G', and we will refer to the node in G' into which W has

been clustered as Ω. For each arc α in G that is not contained in subgraph(W), we denote the cor-

responding arc in G' by α'. Finally, if X ⊆ N(G), we refer to the “corresponding” subset of N(G')

as X'. That is, X' consists of all members of X that are not in W; and if X contains a member of W,

then X' also contains Ω.

For example, if G is the SDF graph in figure 7(a), W = {A, B}, and α and β respectively

denote the arc directed from A to C and the arc directed from C to B, then we denote the graph in

figure 7(b) by G', and in G' we denote the arc directed from Ω to C by α' and the arc denoted from

C to Ω by β'. Also, If X = {A, C}, then X' = {Ω, C}.

Lemma 4: Suppose that G is a strongly connected SDF graph and X1, X2 partition N(G) such that

X1 |G X2. Also suppose that A, B are nodes in G such that A, B ∈ X1 or A, B ∈ X2. If we cluster

W = {Α, Β} then the resulting SDF graph G' is loosely interdependent.1

Proof. Let Φ denote the set of arcs directed from a node in X2 to a node in X1, and let Φ' denote

the set of arcs directed from a node in X2' to a node in X1'. Since subgraph {A, B} does not con-

tain any arcs in Φ, it follows that Φ' = {α' | α ∈ Φ}. From fact 5, it can easily be verified that for all

α', total_consumed(α', G') = total_consumed(α, G). Now since X1 |G X2, we have ∀ α ∈ Φ,

delay(α) ≥ total_consumed(α, G). It follows that ∀ α' ∈ Φ', delay(α') ≥ total_consumed(α', G').

We conclude that X1' is subindependent of X2' in G'. QED.

Definition 4: We say that two SDF graphs G1 and G2 are isomorphic if there exist bijective map-

pings f1: N(G1) → N(G2) and f2: A(G1) → A(G2) such that for each α ∈ A(G1), source(f2(α)) =

f1(source(α)), sink(f2(α)) = f1(sink(α)), delay(f2(α)) = delay(α), p(f2(α)) = p(α), and c(f2(α)) =

c(α). Intuitively, two SDF graphs are isomorphic if they differ only by a relabeling of the nodes.

For example, the SDF graph in figure 7(d) is isomorphic to subgraph({A, B}) in figure 7(c).

1.  However, G' may be deadlocked even if G is not. This will not be a problem in our application of lemma 4.



Clustering to Make Data Transfers More Efficient

23 of 33

least one arc directed from A to B has zero delay; (c) A and B are invoked the same number of

times in a periodic schedule; and (d) B has no predecessors other than A or B. The remainder of

this section is devoted to proving this claim and explaining the corresponding clustering tech-

nique.

We motivate our clustering technique with the example shown in figure 8. One possible

single appearance schedule for figure 8(a) is (10 X)(10 Y)ZV(10W). This is the minimum activa-

tion schedule preferred by Ritz et al. [21]; however, it is inefficient with respect to buffering. Due

to the loop that specifies ten successive invocations of X, the data transfers between X and Y can-

not take place in machine registers and 10 words of data-memory are required to implement the

arc connecting X and Y. However, observe that conditions (a)-(d) of our above claim all hold for

the adjacent pairs {X, Y} and {Z, V}. Thus, we can cluster these pairs without cancelling the

existence of a single appearance schedule. The hierarchical graph that results from this clustering

is shown in figure 8(d); this graph leads to the single appearance schedule (10 Ω2)Ω1(10 W) ⇒

(10 XY)ZV(10 W). In this second schedule, each sample produced by X is consumed by Y in the

same loop iteration, so all of the transfers between X and Y can occur through a single machine

register. Thus, the clustering of X and Y saves 10 words of buffer space for the data transfers

between X and Y, and it allows these transfers to be performed through registers rather than mem-

ory, which will usually result in faster code.

Fig. 8. An example of clustering to increase the frequency of data transfers that occur
through registers rather than memory.

10D
V W X Y Z

10 1 1 1 1 1 1 10

11

Ω1 W Ω2

10 1 1 1

10D

(b)

(a)

10 1



Clustering to Make Data Transfers More Efficient

22 of 33

Figure 7 illustrates two ways in which arbitrary clustering decisions can conflict with code

compactness objectives. Observe that figure 7(a) is an acyclic graph so it must have a single

appearance schedule. Figure 7(b) is the hierarchical SDF graph that results from clustering A and

B in figure 7(a). It is easy to verify that this is a tightly interdependent graph. In fact, the only min-

imal periodic schedule for figure 7(a) that we can derive from this clustering is CΩC ⇒ CABC.

Thus the clustering of A and B in figure 7(a) cancels the existence of a single appearance sched-

ule.

In figure 7(c), {A, B} forms a tightly interdependent component and C is not contained in

any tightly interdependent subgraph. From theorem 2, we know that any loose interdependence

algorithm will schedule figure 7(c) in such a way that C appears only once. Now observe that the

graph that results from clustering A and C, shown in figure 7(d), is tightly interdependent. It can

be verified that the most compact minimal periodic schedule for this graph is (5 Ω)B(5 Ω), which

leads to the schedule (5 AC)B(5 AC) for figure 7(c). By increasing the “extent” of the tightly

interdependent component {A, B} to subsume C, this clustering decision increases the minimum

number of appearances of C in the final schedule.

Thus we see that a clustering decision can conflict with optimal code compactness if it

introduces a new tightly interdependent component or extends an existing tightly interdependent

component. In this section we present a clustering technique of great practical use and prove that

it neither extends nor introduces tight interdependence. Our clustering technique and its compati-

bility with loose interdependence algorithms is summarized by the following claim: Clustering

two adjacent nodes A and B in an SDF graph does not introduce or extend a tightly interdepen-

dent component if (a) Neither A nor B is contained in a tightly interdependent component; (b) At

A C

B

2 1

1

2

1

1
C

Ω 2

11

2D

D D D

B

A
1

1010

1

5D 5D

C
1 1

B

Ω 1

1010

1

5D 5D

(a) (b) (c) (d)

Fig. 7. Examples of how clustering can conflict with the goal of code compactness.



Clustering to Make Data Transfers More Efficient

21 of 33

member of Z2 to a member of Z1, we have delay(α) ≥ c(α) × qG(sink(α)). It follows that Z1 |G Z2,

so G is loosely interdependent.

⇐ Suppose that G is loosely interdependent. Then N(G) can be partitioned into Z1 and Z2

such that Z1 |G Z2. By construction of G', there are no arcs in G' directed from a member of Z2 to

a member of Z1, so G' is not strongly connected. QED.

Thus, λsp can be constructed as follows: (1) Determine qG(N) for each node N; (2)

Remove each arc α whose delay is at least c(α) × qG(sink(α)); (3) Determine the strongly con-

nected components of the resulting graph; (4) If the entire graph is the only strongly connected

component, then G is tightly interdependent; Otherwise (5) cluster the strongly connected compo-

nents — the resulting graph is acyclic and has at least two nodes. Any root node of this graph is

subindependent of the rest of the graph. The appendix presents an algorithm that performs (1) in

time O(m); it is obvious that (2) is O(m); Tarjan’s algorithm allows O(m) for (3); and the checks in

(4) and (5) are clearly O(m) as well. Thus, we have a linear λsp, and the total time that λ spends in

λsp is O(m2).

 We have specified λsp, λsc, λas, and λts such that each accounts for O(m2) time, where m is

max(number of nodes, number of arcs). The resulting loose interdependence algorithm is thus of

quadratic worst-case complexity. Note that our worst case estimate is conservative — in practice

only a few decomposition steps are required to fully schedule a strongly connected subgraph,

while our estimate assumes n steps, where n is the number of nodes in the input graph. For most

applications, the running time of the algorithm will scale linearly with the size of the input graph.

6 Clustering to Make Data Transfers More Efficient

In this section, we present a useful clustering technique for increasing the frequency of

data transfers that occur through machine registers rather than memory, and we prove that this

technique does not interfere with the code compactness potential of a loose interdependence algo-

rithm — this clustering preserves the properties of loose interdependence algorithms discussed in

section 4.



Computational Efficiency

20 of 33

Theorem 3: Suppose that G is a nontrivial strongly connected SDF graph. From G, remove all

arcs α for which delay(α) ≥ c(α) × qG(sink(α)), and call the resulting SDF graph G'. Then G is

tightly interdependent if and only if G' is strongly connected.

For example, suppose that G is the strongly connected SDF graph in figure 6(a). The repe-

titions vector for G is qG(A, B, C, D) = (1, 2, 2, 4). This graph is loosely interdependent if d1 ≥ 2,

which corresponds to {C, D} |G {A, B}, or if d2 ≥ 4, which corresponds to {A, B} |G {C, D}. The

corresponding G'’s are depicted at the bottom of figure 6: Figure 6(b) shows G' when d1 ≥ 2 and d2

< 4, and figure 6(c) shows G' when d2 ≥ 4 and d1 < 2. Observe that in both of these cases, G' is not

strongly connected.

Proof. We prove both directions by contraposition.

⇒ Suppose that G' is not strongly connected. Then N(G') can be partitioned into Z1 and Z2

such that there is no arc directed from a member of Z2 to a member of Z1 in G'. Since no nodes

were removed in constructing G', Z1 and Z2 partition N(G). Also, none of the arcs directed from

Z2 to Z1 in G occur in G'. Thus, by the construction of G', for each arc α in G directed from a

A

B

C

D

2

1

12

2

1

1

2

1

2

D

A

B

C

D

2 1

2

1

12

2

1

1

2

1

2

d1D

D

A

B

C

D

2 1

2

1

1

2

1

2

d1D

(a)

(b) (c)
Fig. 6. An illustration of theorem 3.

2D

2D2D

D

D

d2D

D D

2

1d2D



Computational Efficiency

19 of 33

5 Computational Efficiency

The complexity of a loose interdependence algorithm λ depends on its subindependence

partitioning algorithm λsp, strongly connected components algorithm λsc, acyclic scheduling algo-

rithm λas, and tight scheduling algorithm λts. From the proof of theorem 2, we see that λts is

applied exactly once for each tightly interdependent component. For example, the technique of

[4] can be applied as the tight scheduling algorithm. This technique involves a hierarchical clus-

tering phase that has time complexity1 O(number of arcs × number of nodes), followed by a

scheduling phase that is linear in the total number of firings. One drawback of this algorithm, as

mentioned in section 1, is that it requires a reachability matrix, which has quadratic storage cost.

However, we greatly reduce this drawback by restricting application of the algorithm to only the

tightly interdependent components. We are currently investigating other alternatives to scheduling

tightly interdependent SDF graphs.

The other subalgorithms, λsc, λas, and λsp, are successively applied to decompose an SDF

graph, and the process is repeated until all tightly interdependent components are found. In the

worst case, each decomposition step isolates a single node from the current n-node subgraph, and

the decomposition must be recursively applied to the remaining (n − 1) - node subgraph. Thus, if

the original program has n nodes, n decomposition steps are required in the worst case.Tarjan [23]

first showed that the strongly connected components of a graph can be found in O(m) time, where

m = max(number of nodes, number of arcs). Hence λsc can be chosen to be linear, and since at

most n ≤ m decomposition steps are required, the total time that such a λsc accounts for in λ is

O(m2). In section 3 we presented a simple linear-time algorithm that constructs a single appear-

ance schedule for an acyclic SDF graph. Thus λas can be chosen such that its total time is also

O(m2).

The following theorem presents a simple topological condition for loose interdependence

that leads to a linear subindependence partitioning algorithm λsp.

1.  In the worst case, every arc corresponds to a cluster, and each clusterization step requires a reachability-matrix update that is
linear in the number of nodes.



The Class of Loose Interdependence Algorithms

18 of 33

If T is a proper subset of C, then subgraph(C) must be loosely interdependent, since other-

wise subgraph(T) would not be a maximal tightly interdependent subgraph. Thus, λ partitions

subgraph(C) into X and Y such that X |subgraph(C) Y. We set M1 to be that connected component

of subgraph(X) or subgraph(Y) that contains N. Since X, Y partition C, M1 is a proper subset of

Mo. Also, from remark 3, appearances(N, Sλ(subgraph(M0))) = appearances(N, Sλ(sub-

graph(M1))), and from corollary 1, N(T) ⊆ M1.

On the other hand, if T = C, then we set M1 = T. Since T ≠ M0, M1 is a proper subset of M0;

from remark 2, appearances(N, Sλ(subgraph(M0))) = appearances(N, Sλ(subgraph(M1))); and

trivially, T ⊆ M1.

If T ≠ M1, then we can repeat the above procedure to obtain a proper subset M2 of M1 such

that appearances(N, Sλ(subgraph(M1))) = appearances(N, Sλ(subgraph(M2))), and N(T) ⊆ M2.

Continuing this process, we get a sequence M1, M2, …. Since each Mi is a proper subset of its pre-

decessor, we cannot repeat this process indefinitely — eventually, for some k ≥ 0, we will have

N(T) = Mk. But, by construction, appearances(N, Sλ(G)) = appearances(N, Sλ(subgraph(M0))) =

appearances(N, Sλ(subgraph(M1))) = … = appearances(N, Sλ(subgraph(Mk))); and thus appear-

ances(N, Sλ(G)) = appearances(N, Sλ(subgraph(T))). QED.

Theorem 2 states that the tight scheduling algorithm is independent of the subindepen-

dence partitioning algorithm, and vice-versa. Any subindependence partitioning algorithm makes

sure that there is only one appearance for each actor outside the tightly interdependent compo-

nents, and the tight scheduling algorithm completely determines the number of appearances for

actors inside the tightly interdependent components. For example, if we develop a new subinde-

pendence partitioning algorithm that is more efficient in some way (e.g. it is faster or minimizes

data memory requirements), we can replace it for any existing subindependence partitioning algo-

rithm without changing the “compactness” of the resulting schedules — we don’t need to analyze

its interaction with the rest of the loose interdependence algorithm. Similarly, if we develop a new

tight scheduling algorithm that schedules any tightly interdependent graph more compactly than

the existing tight scheduling algorithm, we are guaranteed that using the new algorithm instead of

the old one will lead to more compact schedules overall.



The Class of Loose Interdependence Algorithms

17 of 33

Lemma 3: Suppose that G is a a connected SDF graph, Y and Z are subsets of N(G) such that (Y

∩ Z) ≠ ∅, and subgraph(Y) and subgraph(Z) are both tightly interdependent. Then subgraph(Y ∪

Z) is tightly interdependent.

Proof. (By contraposition.) Let H = Y ∪ Z, and suppose that subgraph(H) is loosely interdepen-

dent. Then there exist H1 and H2 such that H = H1 ∪ H2 and H1 |subgraph(H) H2. From H1 ∪ H2 =

Y ∪ Z, and Y ∩ Z ≠ ∅, it is easily seen that H1 and H2 both have a nonempty intersection with Y,

or they both have a nonempty intersection with Z. Without loss of generality, assume that H1 ∩ Y

≠ ∅ and H2 ∩ Y ≠ ∅. From lemma 2, (H1 ∩ Y) is subindependent in subgraph(Y), and thus subg-

raph(Y) is not tightly interdependent. QED.

Lemma 3 implies that each SDF graph G has a unique set {C1, C2, …, Cn} of maximal

tightly interdependent subgraphs such that i ≠ j ⇒ N(Ci)∩ N(Cj) = ∅, and every tightly interdepen-

dent subgraph in G is contained in some Ci. We call each N(Ci) a tightly interdependent component

of G. It follows from theorem 1 that G has a single appearance schedule iff G has no tightly inter-

dependent components. Furthermore, since the tightly interdependent components are unique, the

performance of a loose interdependence algorithm, with regards to schedule compactness, is not

dependent on the particular subindependence partitioning algorithm, the sub-algorithm used to

partition the loosely interdependent components. The following theorem develops this result.

Theorem 2: Suppose G is an SDF graph that has a PASS, N is a node in G, and λ is a loose inter-

dependence algorithm. If N is not contained in a tightly interdependent component of G, then N

appears only once in Sλ(G). On the other hand, if N is contained in a tightly interdependent com-

ponent T then appearances(N, Sλ(G)) = appearances(N, Sλ(subgraph(T))) — the number of

appearances of N is determined entirely by the tight scheduling algorithm of λ.

Proof. If N is not contained in a tightly interdependent component of G, then N is not contained in

any tightly interdependent subgraph. Then from lemma 1, appearances(N, Sλ(G)) = 1.

Now suppose that N is contained in some tightly interdependent component T of G. If T =

N(G) we are done. Otherwise we set M0 = N(G), and thus T ≠ Mo; by definition, tightly interde-

pendent graphs are strongly connected, so T is contained in some strongly connected component

C of subgraph(Mo).



The Class of Loose Interdependence Algorithms

16 of 33

⇒ Suppose that G has a single appearance schedule and that C is a strongly connected

subset of N(G). Set Z0 = G. From fact 7, there exist X0, Y0 ⊆ Z0 such that X0 |subgraph(Z0) Y0,

and subgraph(X0) and subgraph(Y0) both have single appearance schedules. If X0 and Y0 do not

both intersect C then C is completely contained in some strongly connected component Z1 of

subgraph(X0) or subgraph(Y0). We can then apply fact 7 to partition Z1 into X1, Y1, and continue

recursively in this manner until we obtain a strongly connected Zk ⊆ N(G), with the following

properties: Zk can be partitioned into Xk and Yk such that Xk |subgraph(Zk) Yk; C ⊆ Zk; and (Xk ∩

C) and (Yk ∩ C) are both nonempty. From lemma 2, (Xk ∩ C) is subindependent in subgraph(C),

so C must be loosely interdependent. QED.

Corollary  2: Given a connected SDF graph G, any loose interdependence algorithm will obtain

a single appearance schedule if one exists.

Proof: If a single appearance schedule for G exists, then from theorem 1, G contains no tightly

interdependent subgraphs. In other words, no node in G is contained in a tightly interdependent

subgraph of G. From lemma 1, the schedule resulting from any loose interdependence algorithm

contains only one appearance for each actor in G. QED.

Thus, a loose interdependence algorithm always obtains an optimally compact solution

when a single appearance schedule exists. When a single appearance schedule does not exist,

strongly connected graphs are repeatedly decomposed until tightly interdependent subgraphs are

found. In general, however, there may be more than one way to decompose N(G) into two parts so

that one of the parts is subindependent of the other. Thus, it is natural to ask the following ques-

tion: Given two distinct partitions {Z1, Z2} and {Z1', Z2'} such that Z1 |G Z2 and Z1' | G Z2', is it

possible that one of these partitions leads to a more compact schedule than the other? Fortunately,

as we will show in the remainder of this section, the answer to this question is “No”. In other

words, any two loose interdependence algorithms that use the same tight scheduling algorithm

always lead to equally compact schedules. The key reason is that tight interdependence is an addi-

tive property.



The Class of Loose Interdependence Algorithms

15 of 33

H2 of H1', then λ will partition H2, and we will obtain a proper subset H2' of H1' such that appear-

ances(N, Sλ(subgraph(H1'))) = appearances(N, Sλ(subgraph(H2'))). Continuing in this manner,

we get a sequence H1', H2', … of subsets of N(G) such that each Hi' is a proper subset of Hi-1', N is

contained in each Hi', and appearances(N, Sλ(G)) = appearances(N, Sλ(subgraph(H1'))) = appear-

ances(N, Sλ(subgraph(H2'))) = …. Since each Hi' is a strict subset of its predecessor, we can con-

tinue this process only a finite number, say m, of times. Then N ∈ Hm', N is not contained in a

nontrivial strongly connected component of subgraph(Hm'), and appearances(N, Sλ(G)) =

appearances(N, Sλ(subgraph(Hm'))). But from remark 1, Sλ(subgraph(Hm')) contains only one

appearance of N. QED.

Lemma 2: Suppose that G is a strongly connected SDF graph, P ⊆ N(G) is subindependent in G,

and C is a strongly connected subset of N(G) such that C ∩ P ≠ C and C ∩ P ≠ ∅. Then C ∩ P is

subindependent in subgraph(C).

Proof. Suppose that α is an arc directed from a member of (C − (C ∩ P)) to a member of (C ∩ P).

By the subindependence of P in G, delay(α) ≥ c(α) × qG(sink(α)), and by fact 3, qG(sink(α)) ≥

qsubgraph(C)(sink(α)). Thus, delay(α) ≥ c(α) × qsubgraph(C)(sink(α)). Since this holds for any α

directed from (C − (C ∩ P)) to (C ∩ P), we conclude that (C ∩ P) is subindependent in C. QED.

Corollary  1:  Suppose that G is a strongly connected SDF graph, Z1 and Z2 are subsets of N(G)

such that Z1 |G Z2, and T is a tightly interdependent subgraph of G. Then N(T) ⊆ Z1 or N(T) ⊆ Z2.

Proof (By contraposition.) If N(T) has nonempty intersection with both Z1 and Z2, then from

lemma 2, N(T) ∩ Z1 is subindependent in T, so T is loosely interdependent. QED.

Theorem 1: Suppose that G is a strongly connected SDF graph. Then G has a single appearance

schedule iff every nontrivial strongly connected subgraph of G is loosely interdependent.

Proof. ⇐ Suppose every nontrivial strongly connected subgraph of G is loosely interdependent,

and let λ be any loose interdependence algorithm. Since no node in G is contained in a tightly

interdependent subgraph, it follows from lemma 1 that Sλ(G) is a single appearance schedule for

G.



The Class of Loose Interdependence Algorithms

14 of 33

strongly connected component besides Zk, and since S'(G) contains only one appearance of Ωk,

we have appearances(N, SL(G)) = appearances(N, Sx Sy). Thus, for i = 1, 2,…, v, N ∈ Xi ⇒

appearances(N, SL(G)) = appearances(N, SL(subgraph(Xi))). By the same argument, we can

show that for i = 1, 2,…, w, N ∈ Yi ⇒ appearances(N, SL(G)) = appearances(N, SL(subgra-

ph(Yi))).

L(•, •, •, •) defines a family of algorithms, which we call loose interdependence algo-

rithms because they exploit loose interdependence to decompose the input SDF graph. Since

nested recursive calls decompose a graph into finer and finer strongly connected components, it is

easy to verify that any loose interdependence algorithm always terminates. Each loose interdepen-

dence algorithm λ = L(A1, A2, A3, A4) involves the “sub-algorithms” A1, A2, A3, and A4, which

we call, respectively, the subindependence partitioning algorithm of λ, the strongly connected

components algorithm of λ, the acyclic scheduling algorithm of λ, and the tight scheduling algo-

rithm of λ.

We will apply a loose interdependence algorithm to derive a nonrecursive necessary and

sufficient condition for the existence of a single appearance schedule. First, we need to introduce

two lemmas.

Lemma 1: Suppose G is a connected SDF graph; N is a node in G that is not contained in any

tightly interdependent subgraph of G; and λ is a loose interdependence algorithm. Then N appears

only once in Sλ(G), the schedule generated by λ.

Proof. From remark 1, if N is not contained in a nontrivial strongly connected component of G,

the result is obvious, so we assume, without loss of generality, that N is in some nontrivial

strongly connected component H1 of G. From our assumptions, subgraph(H1) must be loosely

interdependent, so λ partitions H1 into X and Y, where X |subgraph(H1) Y. Let H1' denote that

connected component of subgraph(X) or subgraph(Y) that contains N. From remark 3, appear-

ances(N, Sλ(G)) = appearances(N, Sλ(subgraph(H1'))).

From our assumptions, all nontrivial strongly connected subgraphs of H1' that contain N

are loosely interdependent. Thus, if N is contained in a nontrivial strongly connected component



The Class of Loose Interdependence Algorithms

13 of 33

for i = 1, 2, …, s

Apply A1 to subgraph(Zi);
if X, Y ⊆ Zi are found such that X |subgraph(Zi) Y,
then

• Determine the connected components X1,X2,…,Xv of
subgraph(X), and the connected components
Y1,Y2,…,Yw of subgraph(Y).
• Recursively apply algorithm L to construct the
schedules
Sx = (qG(X1)SL(subgraph(X1))…(qG(Xv) SL(subgraph(Xv)),
Sy = (qG(Y1)SL(subgraph(Y1))…(qG(Yw) SL(subgraph(Yw)).
• Replace the (single) appearance of Ωi in S'(G)
with Sx Sy.

else (subgraph(Zi) is tightly interdependent)
• Apply A4 to obtain a valid schedule Si for
subgraph(Zi).
• Replace the single appearance of Ωi in S with
(qG(Zi) Si).

end-if

end-for

The for-loop replaces each “Ωi” in S'(G) with a valid
looped schedule for subgraph(Zi). From repeated application of
fact 4, we know that these replacements yield a valid looped
schedule SL for G. We output SL.■

Remark 1: Observe that step 4 does not insert or delete appearances of actors that are not

contained in a nontrivial strongly connected component Zi. Since A3 generates a single appear-

ance schedule for G', we have that for every node N that is not contained in a nontrivial strongly

connected component of G, appearances(N, SL(G)) = 1.

Remark 2: If C is a nontrivial strongly connected component of G and N ∈ C, then since

SL(G) is derived from S'(G) by replacing the single appearance of each Ωi, we have appearanc-

es(N, SL(G)) = appearances(N, SL(subgraph(C))).

Remark 3: For each strongly connected component Zk whose subgraph is loosely interde-

pendent, L partitions Zk into X and Y such that X |subgraph(Zk) Y, and replaces the single appear-

ance of Ωk in S'(G) with Sx Sy. If N is a member of the connected component Xi, then N ∉ Y, so

appearances(N, Sx Sy) = appearances(N, SL(subgraph(Xi))). Also since N cannot be in any other



The Class of Loose Interdependence Algorithms

12 of 33

4 The Class of Loose Interdependence Algorithms

The properties of loose/tight interdependence are important for organizing loops because,

as we will show, the existence of a single appearance schedule is equivalent to the absence of

tightly interdependent subgraphs. However, these properties are useful even when tightly interde-

pendent subgraphs are present. The following definition specifies how to use loose interdepen-

dence to guide the looping process.

Definition 3: Let A1 be any algorithm that takes as input a nontrivial strongly connected SDF

graph G, determines whether G is loosely interdependent, and if so, finds a subindependent subset

of N(G). Let A2 be any algorithm that finds the strongly connected components of a directed

graph. Let A3 be any algorithm that takes an acyclic SDF graph and generates a valid single

appearance schedule. Finally, let A4 be any algorithm that takes a tightly interdependent SDF

graph, and generates a valid looped schedule of blocking factor 1. We define the algorithm L(A1,

A2, A3, A4) as follows:

Input: a connected SDF graph G.
Output: a valid unit-blocking-factor looped schedule SL(G)
for G.
Step 1: Use A2 to determine the nontrivial strongly connected
components Z1, Z2, …, Zs of G.
Step 2: Cluster Z1, Z2, …, Zs into nodes Ω1, Ω2, …, Ωs

respectively, and call the resulting graph G'.
This is an acyclic SDF graph.
Step 3: Apply A3 to G'; denote the resulting schedule S'(G).
Step 4:

A

BC

2

3

12

3

1

d1Dd3D

d2D

Fig. 5. An illustration of loose and tight interdependence. Here d1, d2, and d3 represent the num-
ber of delays on the associated arcs. This SDF graph is tightly interdependent if and only if (d1 <
6), (d2 < 2), and (d3 < 3).



Subindependence

11 of 33

A slightly different form of this condition was developed independently by Ritz et al. in

[21], which discusses single appearance schedules in the context of minimum activation sched-

ules. For example, the schedule A(2CB) for figure 1 results in 5 activations since invocations of C

and B are interleaved. In contrast, the schedule A(2B)(2C) requires only one activation per actor,

for a total of 3 activations. In the objectives of [21], the latter schedule is preferable because in

that code generation framework there is a large overhead associated with each activation. How-

ever such overhead can often be avoided with careful instruction scheduling and register alloca-

tion, as [18] demonstrates. We prefer the former schedule, which has less looping overhead and

requires less memory for buffering.

Fact 7 implies that for an SDF graph to have a single appearance schedule, we must be

able to decompose each nontrivial strongly connected component into two subsets in such a way

that one subset is subindependent of the other. Another implication of fact 7 is that every acyclic

SDF graph has a single appearance schedule. We can easily construct a single appearance sched-

ule for an acyclic SDF graph. We simply pick a root node N1; schedule all of its invocations in

succession; remove N1 from the graph and pick a root node N2 of the remaining graph; schedule

all of N2’s invocations in succession; and so on until we have scheduled all of the nodes. By this

procedure, we get a cascade of loops (qG(N1) N1) (qG(N2) N2) … (qG(Nk) Nk), which gives us a

single appearance schedule.

Definition 2: Suppose that G is a nontrivial strongly connected SDF graph. Then we say that G is

loosely interdependent if N(G) can be partitioned into Z1 and Z2 such that Z1 |G Z2. We say

that G is tightly interdependent if it is not loosely interdependent.

For example, consider the strongly connected SDF graph in figure 5. The repetitions vec-

tor for this graph is qG(A, B, C) = (3, 2, 1). Thus the graph is loosely interdependent if and only if

(d1 ≥ 6) or (d2 ≥ 2) or (d3 ≥ 3).

In this section we have introduced topological properties of SDF graphs that are related to

the existence of single appearance schedules. In the following section we use these properties to

develop our scheduling framework and to demonstrate some of its useful qualities.



Subindependence

10 of 33

form the class of schedules that allow in line code generation without any code space or subrou-

tine penalty.

3 Subindependence

Our scheduling framework for synthesizing compact nested loop structures is based on a

form of precedence independence, which we call subindependence.

Definition 1: Suppose that G is a connected SDF graph. If Z1 and Z2 are disjoint subsets of N(G)

we say that “Z1 is subindependent of Z2 in G” if for every arc α in G such that source(α) ∈ Z2

and sink(α) ∈ Z1, we have delay(α) ≥ total_consumed(α, G). We occasionally drop the “in G”

qualification if G is understood from context. If (Z1 is subindependent of Z2) and (Z1 ∪ Z2 =

N(G)), then we write (Z1 |G Z2), and we say that Z1 is subindependent in G.

Thus Z1 is subindependent of Z2 if no samples produced from Z2 are consumed by Z1 in

the same schedule period that they are produced; and Z1 |G Z2 if Z1 is subindependent of Z2, and

Z1 and Z2 form a partition of the nodes in G. For example, consider figure 3(a). Here qG(A, B, C)

= (10, 4, 5), and the complete set of subindependence relationships is (1) {A} is subindependent

of {C}; (2) {B} is subindependent of {C}; (3) {A, B} |G C; and {C} is subindependent of {B}.

The following property of subindependence follows immediately from definition 1.

Fact 6: Suppose that G is a strongly connected SDF graph and X, Y, and Z are disjoint subsets of

N(G). Then

(a) (X is subindependent of Z) and (Y is subindependent of Z) ⇒ (X ∪ Y) is subindependent of Z.

(b) (X is subindependent of Y) and (X is subindependent of Z) ⇒ X is subindependent of (Y ∪ Z).

Our scheduling framework is based on the following condition for the existence of a sin-

gle appearance schedule, which is developed in [3].

Fact 7: An SDF graph has a valid single appearance schedule iff for each nontrivial strongly con-

nected component Z, there exists a partition X, Y of Z such that X |subgraph(Z) Y, and

subgraph(X) and subgraph(Y) each have single appearance schedules.



Background

9 of 33

Let S* denote the schedule that results from replacing each appearance of Ω in S with SZ. Then S*

is a PASS for G.

Fact 5: Suppose G is a connected SDF graph, Z is a subset of nodes in G, and G' is the SDF graph

that results from clustering subgraph(Z) into the node Ω. Then qG'(Ω) = qG(Z); and for any node N

in G' other that Ω, qG'(N) = qG(N).

Given a directed graph G, we say that G is strongly connected if for any pair of distinct

nodes A, B in G, there is a directed path from A to B and a directed path from B to A. We say that

a strongly connected graph is nontrivial if it contains more than one node. Finally, a strongly con-

nected component of G is a subset of nodes Z such that subgraph(Z, G) is strongly connected, and

there is no strongly connected subset of N(G) that properly contains Z. For example {A, B} and

{C} are the strongly connected components of figure 3(a).

Similarly, we define a connected component of a directed graph to be a maximal subset of

nodes Z such that if A and B are distinct members of Z, then there is a directed path from A to B,

or there is a directed path from B to A, or both. For example in figure 4, the connected compo-

nents are {A}, {C, D, F}, and {B, E}.

Given a connected SDF graph G, and an arc α in G, we define total_consumed(α, G) to be

the total number of samples consumed from α in a minimal schedule period for G. Thus total_-

consumed(α, G) = qG(sink(α))c(α). Finally, given an SDF graph G, a looped schedule S for G and

a node N in G, we define appearances(N, S) to be the number of times that N appears in S, and we

say that S is a single appearance schedule if for each N ∈ N(G), appearances(N, S) = 1. For

example, consider the two schedules S1 = CA(2B)C and S2 = A(2B)(2C) for figure 1. We have

appearances(C, S1) = 2; appearances(C, S2) = 1; S1 is not a single appearance schedule because C

appears more than once; and S2 is a single appearance schedule. Single appearance schedules

A F

C D

E B

Fig. 4. A directed graph that has three connected components.



Background

8 of 33

the component of qG corresponding to a node N by qG(N). Every PASS for G invokes each node

N a multiple of qG(N) times, and corresponding to each PASS S, there is a positive integer J(S)

called the blocking factor of S, such that S invokes each N ∈ N(G) exactly JqG(N) times. We call

qG the repetitions vector of G. For example in figure 3, qG(A) = 10, qG(B) = 4, and qG(C) = 5. An

efficient algorithm to compute qG is presented in the appendix. The following properties of repeti-

tions vectors are established in [13]:

Fact 1: The components of a repetitions vector are collectively coprime.

Fact 2: The balance equation qG(source(α)) × p(α) = qG(sink(α)) × c(α) is satisfied for each arc

α in G.

Given a subset Z of nodes in a connected SDF graph G, we define qG(Z) = gcd({qG(N) | N

∈ Ζ}), where gcd denotes the greatest common divisor. We can interpret qG(Z) as the number of

times that G invokes the “subsystem” Z. We will use the following property of connected sub-

systems which is derived in [3].

Fact 3:  If G is a connected SDF graph, and Z is a connected subset of N(G), then for each N ∈ Z,

qG(N) = qG(Z)qsubgraph(Z)(N).

For our hierarchical scheduling approach, we will apply the concept of clustering a sub-

graph. This process is illustrated in figure 3. Here subgraph({A, C}) of (a) is clustered into the

hierarchical node ΩAC, and the resulting SDF graph is shown in (b). Similarly, clustering

subgraph({A, B}) results in the graph of (c). Each input arc α to a clustered subgraph P is

replaced by an arc α' having p(α') = p(α), and c(α') = c(α) × qG(sink(α))/qG(N(P)), the number of

samples consumed from α in one invocation of subgraph P. Similarly we replace each output arc

β with β' such that c(β') = c(β), and p(β') = p(β) × qG(source(α))/qG(N(P)). The following proper-

ties of clustered subgraphs are proven in [3]

Fact 4: Suppose G is a connected SDF graph, Z is a subset of nodes in G, G' is the SDF graph that

results from clustering subgraph(Z) into the hierarchical node Ω, and S' is a PASS for G'. Suppose

that SZ is a PASS for subgraph(Z) such that for each N ∈ Z, SZ invokes N (qG(N)/qG(Z)) times.



Background

7 of 33

For an SDF graph G, we denote the set of nodes in G by N(G) and the set of arcs in G by

A(G). For an SDF arc α, we let source(α) and sink(α) denote the nodes at the source and the sink

of α; we let p(α) denote the number of samples produced by source(α), c(α) denote the number of

samples consumed by sink(α), and we denote the delay on α by delay(α).We define a subgraph

of G to be that SDF graph formed by any Z ⊆ N(G) together with the set of arcs {α ∈ A(G) | sour-

ce(α), sink(α) ∈ Z}. We denote the subgraph associated with the subset of nodes Z by

subgraph(Z, G); if G is understood, we may simply write subgraph(Z). Finally, if N1 and N2 are

two nodes in an SDF graph, we say that N1 is a successor of N2 if there is an arc directed from N2

to N1; we say that N1 is a predecessor of N2 if N2 is a successor of N1; and we say that N1 and N2

are adjacent if N1 is a predecessor or successor of N2.

We can think of each arc in G as having a FIFO queue that buffers the tokens that pass

through the arc. Each FIFO contains an initial number of samples equal to the delay on the associ-

ated arc. Firing a node in G corresponds to removing c(α) tokens from the head of the FIFO for

each input arc α, and appending p(β) tokens to the FIFO for each output arc β. After a sequence of

0 or more firings, we say that a node is fireable if there are enough tokens on each input FIFO to

fire the node. An admissable sequential schedule (“sequential” is used to distinguish this type of

schedule from a parallel schedule) for G is a finite sequence S = S1 S2 … SN of nodes in G such

that each Si is fireable immediately after S1, S2, …, Si-1 have fired in succession.

We say that a sequential schedule S is a periodic schedule if it invokes each node at least

once and produces no net change in the number of tokens on any arc’s FIFO — for each arc α,

(the number of times source(α) is fired in S) × p(α) = (the number of times sink(α) is fired in S) ×

c(α). A periodic admissable sequential schedule (PASS) is a schedule that is both periodic and

admissable. We will use the term valid schedule to describe a schedule that is a PASS, and the

term consistent to describe an SDF graph that has a PASS. Except where otherwise stated, we deal

only with consistent SDF graphs in this paper.

In [13], it is shown that for each connected SDF graph G, there is a unique minimum num-

ber of times that each node needs to be invoked in a periodic schedule. We specify these minimum

firing rates by a vector of positive integers qG, which is indexed by the nodes in G, and we denote



Background

6 of 33

graphs that contain tightly interdependent subgraphs, we show that our scheduling framework

naturally isolates the minimal subgraphs that require special care. Only when analyzing these

“tightly interdependent components”, do we need to apply reachability matrix-based analysis, or

some other explicit deadlock-detection scheme. We emphasize that the techniques developed in

this paper extend the developments of [4] by improving the analysis of cyclic subgraphs. In par-

ticular, our earlier method still applies to acyclic subgraphs for organizing looping while keeping

buffering requirements low. However, when it is used only for acyclic graphs, deadlock is not an

issue, and the reachability matrix is no longer required.

An important aspect of our scheduling framework is its flexibility. By modularizing the

framework into “sub-algorithms”, we allow other scheduling objectives to be integrated in a man-

ner that does not conflict with code compactness objectives. Also, we show how decisions that a

scheduler makes about grouping, or “clustering”, computations together can be formally evalu-

ated in terms of their effects on program compactness. As an example, we demonstrate a very effi-

cient clustering technique for increasing the amount of buffering that is done in machine registers,

as opposed to memory, and we prove that this clustering strategy preserves codes space compact-

ness for a large class of SDF graphs.

Because we focus on the fundamental limits of program compactness via loops, the meth-

ods developed in this paper cannot be directly applied to the general parallel processing case.

However, we believe that these techniques will be helpful to understanding problems that com-

bine parallelization and looping objectives, and we are currently investigating such problems. The

techniques of this paper do apply to target systems that exploit instruction-level parallelism, such

as superscalar and pipelined architectures.

2 Background

An SDF program is normally translated into a loop, where each iteration of the loop exe-

cutes one cycle of a periodic schedule for the graph. In this section we summarize important prop-

erties of such periodic schedules. Most of the terminology introduced in this and subsequent

sections is summarized in the glossary at the end of the paper.



Introduction

5 of 33

Observe that this cost is quadratic in the number of distinct actor invocations (precedence graph

nodes). For example, a rasterization actor that decomposes an image into component pixels may

involve a sample-rate change on the order of 250000 to 1. If the rasterization output is connected

to a homogenous block (for example, a gamma level correction), this block alone will produce on

the order of (250000)2 = 6.25×1010 entries in the reachability matrix! Thus very large rate

changes preclude straightforward application of the reachability matrix; this is unfortunate

because looping is most important precisely for such cases. The second limitation in [4] is its fail-

ure to process cyclic paths in the graph optimally. Since cyclic paths limit looping, first priority

should be given to preserving the full amount of looping available within the strongly connected

components [1] of the graph. As figure 3 illustrates, clustering subgraphs based on repetition

count alone does not fully carry out this goal.

In this paper, we develop a class of scheduling algorithms that extract the most compact

looping structure from the cyclic paths in the SDF graph. This scheduling framework is based on

a topological quality that we call “tight interdependence”. We show that for SDF graphs that con-

tain no tightly interdependent subgraphs, our framework always synthesizes the most compact

looping structures. Interestingly and fortunately, a large majority of practical SDF graphs seem to

fall into this category. Furthermore, for this class of graphs, our technique does not require use of

the reachability matrix, the precedence graph, or any other unreasonably large data structure. For

A BA B

C

A BΩAC B

ΩAB

C

52

521

2

5

2

54

54

10D

10D

(a) (b) (c)

Fig. 3. This example illustrates how clustering subgraphs based on repetition count alone can
conceal looping opportunities that occur within cyclic paths. Part (a) depicts a multirate SDF
graph. Two pairwise clusterings lead to graphs that have schedules — {A, B}, having repetition
count 2, and {A, C}, having repetition count 5 (the clustering of B and C results in deadlock).
Clustering the subgraph with the highest repetition count yields the hierarchical topology in (b),
for which the most compact schedule is (2B)(2ΩAC)BΩACB(2ΩAC) ⇒ (2B)(2(2A)C)B(2A)C-
B(2(2A)C). Clustering the subgraph {A,B} of lower repetition count, as depicted in part (c), yields
the more compact schedule (2ΩAB)(5C) ⇒ (2(2B)(5A))(5C).



Introduction

4 of 33

of a subgraph can be viewed as the number of times that a minimal schedule for the subgraph is

repeated in a minimal schedule for the overall graph. We will define this concept precisely in the

next section.

By not discriminating against sample-rate boundaries, our approach exposed looping more

thoroughly than How’s scheme. Furthermore, by selecting subgraphs based on repetition count,

we reduced data memory requirements, an aspect that How’s scheme did not address.

Clustering a subgraph must be done with care since certain groupings cause deadlock. For

example, combining C and D in figure 2 results in a graph for which no periodic schedule exists

because the grouping “hides” a critical delay. Similarly, deadlock can be introduced when a

grouping encapsulates a source actor. Thus, for each candidate subgraph, we must first verify that

its consolidation does not result in an unschedulable graph. One way to perform this check is to

attempt to schedule the new SDF graph [13], but this approach is extremely time consuming if a

large number of clustering candidates must be considered. In [4], we employed a computationally

more efficient method in which we maintained the subgraph hierarchy on the acyclic precedence

graph rather than the SDF graph. Thus we could verify whether or not a grouping introduced

deadlock by checking whether or not it introduced a cycle in the precedence graph. Furthermore,

we showed that this check can be performed quickly by applying a reachability matrix, which

indicates for any two precedence graph nodes (invocations) P1 and P2, whether there is a prece-

dence path from P1 to P2.

Two limitations surfaced in the approach of [4]. First, the storage cost of the reachability

matrix proved prohibitive for multirate applications involving very large sample rate changes.

A B

CD

2 1

1

4

11

2

1

D

2D
A B

ΩCD

2 1

1

42

1

2D

Fig. 2. An example of how clustering a subgraph in an SDF graph can result in deadlock.



Introduction

3 of 33

a representation of the input program as a hierarchy of dataflow graphs. It is important for a com-

piler to recognize SDF components of this hierarchy, since in DSP applications, usually a large

fraction of the computation can be expressed with SDF semantics. For example, in [6] Dennis

shows how to convert recursive stream functions in SISAL-2 into SDF graphs.

In [11], How evaluated a scheme in which existing schedulers that did not consider loop-

ing were augmented with a post-processing phase that detected successively occurring repetitive

firing patterns, and concluded that such simple tactics were ineffective for generating the most

compact programs. To synthesize lean looping structures, the scheduler must exploit specific

topological properties in the SDF graph. How demonstrated such a property by showing that we

can often greatly improve looping by clustering subgraphs that operate at the same sample rate,

and scheduling such subgraphs as a single unit. Figure 1 shows how this technique can improve

looping. A naive scheduler might schedule this SDF graph as CABCB, which offers no looping

possibility within the schedule period. However, if we first group the subgraph {B,C} into a hier-

archical “supernode” Ω, a scheduler will generate the schedule ΑΩΩ. To highlight the repetition

in a schedule, we let the notation (n X1X2…Xm) designate n successive repetitions of the firing

sequence X1X2…Xm. We refer to a schedule expressed with this notation as a looped schedule.

Using this notation, and substituting each occurrence of Ω with a subschedule for the correspond-

ing subgraph, our clustering of the uniform-rate set {B,C} leads to either A(2BC) or A(2CB),

both of which expose the full potential for looping in the SDF graph of figure 1.

We explored the looping problem further in [4]. First, we generalized How’s scheme to

exploit looping opportunities that occur across sample-rate changes. Our approach involved con-

structing the subgraph hierarchy in a pairwise fashion by clustering exactly two nodes at each

step. Our subgraph selection was based on frequency of occurrence — we selected the pair of

adjacent nodes whose associated subgraph had the largest repetition count. The “repetition count”

A B C
2 1 1 1

D

Fig. 1.  A simple SDF graph.



Introduction

2 of 33

1 Introduction

In the dataflow model of computation, pioneered by Dennis [5], a program is represented

as a directed graph in which the nodes represent computations and the arcs specify the passage of

data. Synchronous dataflow (SDF) [14] is a restricted form of dataflow in which the nodes, called

actors, consume a fixed number of data items, called tokens or samples, per invocation and pro-

duce a fixed number of output samples per invocation. SDF and related models have been studied

extensively in the context of synthesizing assembly code for signal processing applications, for

example [7, 8, 9, 10, 16, 18, 19, 20].

Figure 1 shows a simple SDF graph with three actors, labeled A, B and C. Each arc is

annotated with the number of samples produced by its source and the number of samples con-

sumed by its sink. Thus, actor A produces two samples on its output arc each time it is invoked

and B consumes one sample from its input arc. The “D” on the arc directed from B to C desig-

nates a unit delay, which we implement as an initial token on the arc.

In SDF, iteration is induced whenever the number of samples produced on an arc (per

invocation of the source actor) does not match the number of samples consumed (per sink invoca-

tion) [12]. For example, in figure 1, actor B must be invoked two times for every invocation of

actor A. Multirate applications often involve a large amount of iteration and thus subroutine calls

must be used extensively, code must be replicated, or loops must be organized in the target pro-

gram. The use of subroutine calls to implement repetition may reduce throughput significantly

however, particularly for graphs involving small granularity. On the other hand, we have found

that code duplication can quickly exhaust on-chip program memory [11]. Thus, it may be essen-

tial that we arrange loops in the target code. In this paper we develop topological relationships

between iteration and looping in SDF graphs.

We emphasize that in this paper, we view dataflow as a programming model, not as a form

of computer architecture[2]. Several programming languages used for DSP, such as Lucid[24],

SISAL[15], and Silage[9] are based on, or include dataflow semantics. The developments in this

paper are applicable to this class of languages. Compilers for such languages can easily construct



GENERATING COMPACT CODE FROM DATAFLOW SPECIFICATIONS

OF MULTIRATE DSP ALGORITHMS 1

Shuvra S. Bhattacharyya
Joseph T. Buck

Soonhoi Ha
Edward A. Lee

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley, California 94720

May 19, 1993

ABSTRACT

Synchronous dataflow (SDF) semantics are well-suited to representing and compiling

multirate signal processing algorithms. A key to this match is the ability to cleanly express itera-

tion without overspecifying the execution order of computations, thereby allowing efficient

schedules to be constructed. Due to limited program memory, it is often desirable to translate the

iteration in an SDF graph into groups of repetitive firing patterns so that loops can be constructed

in the target code. This paper establishes fundamental topological relationships between iteration

and looping in SDF graphs, and presents a scheduling framework that provably synthesizes the

most compact looping structures for a large class of practical SDF graphs. By modularizing dif-

ferent components of the scheduling framework, and establishing their independence, we show

how other scheduling objectives, such as minimizing data buffering requirements or increasing

the number of data transfers that occur in registers, can be incorporated in manner that does not

conflict with the goal of code compactness.

1This research was supported by DARPA, AT&T Bell Laboratories, Semiconductor Research Corporation,
and the Office of Naval Research via the Naval Research Laboratory.

Memorandum No. UCB/ERL M93/36, Electronics Research Laboratory
College of Engineering, University of California

Berkeley, California 94720


